NH3 and dust emissions from broiler houses

Problems and solutions

Nico Ogink (& colleagues within Livestock Environment section)
Uppsala-Lövsta, 10-02-12
Contents

- NH3 issues in broiler production
- NH3 emission levels
- NH3 mitigation options
- dust (PM10/PM2.5) problems in broiler production
- PM concentration and emission levels
- PM mitigation options
- outlook
Europe population and livestock distribution
Ammonia cycle

Transport and reaction

\[\begin{align*}
\text{NH}_4\text{HSO}_4 \\
(\text{NH}_4)_2\text{SO}_4 \\
\text{NH}_4\text{NO}_3
\end{align*} \]

Deposition

\[\text{NH}_3 \quad \text{NH}_4^+ \]

Emission

Effects - Acidification
- Eutrophication
- Loss of biodiversity
Environmental problems related to NH3 emissions

Majority of NH3-emissions in Europe (>90%) from livestock production, sources: barns, storage and application of manure

- NH3-emissions => leads N-deposition in natural areas => eutrophication/acidification => loss of biodiversity
- NH3 in ambient air: major precursor in formation of secondary dust particles (PM2.5) => ambient PM concentration are associated with health problems
- High NH3 concentrations in barns deteriorate working and animal conditions (> 20 ppm)
Ammonia deposition in the Netherlands

- mole-eq./ha
- critical load >1000
- high excess levels in east/centre/south
- areas with > 2000 pigs/km²
Effects of N deposition: loss of biodiversity

NL: since 1990’s development of mitigation options in animal production:

- Housing systems
- Manure application techniques
Ammonia formation in broiler litter

- Around 65% of total N-intake is excreted: not-digested (17%), not-utilized (48%, uric acid)
- Microbial conversion of uric acid and undigested proteins into NH₃:

 \[
 \text{uricase} \\
 C_5O_3(NH)_4 + \frac{1}{2}O_2 + 8H_2O \rightarrow 2CO(NH_2)_2 + 5H_2O + CO_2 + COHCOOH \\
 \rightarrow 4NH_4^+ + 4OH + 3CO_2 + COHCOOH \text{ (glyoxyl acid)}
 \]
Ammonia formation in broiler litter

- Important conversion parameters: N efficiency, DM litter, pH, oxygen availability (litter compaction)

- Emission processes: multi-factor process, not all elements fully understood
NH3 emission patterns in broiler production

Traditioneel

Netherlands standard conditions: 18 – 24 birds/m2, litter based on wood chips/sawdust, litter removal every round

DM effect of litter on relative NH3 emission
NH3 emission measurements

Recent emission measurement campaigns show strong differences between management systems:

Moore et al. 2011, US, 4 barn locations, 1 year average:
- 37.5 g NH3/bird marketed (50 d), and 9.0 g NH3/bird between flocks

Mosquera et al. 2010, NL, 4 barn locations, 1 year average:
- 10.3 g NH3/bird marketed (40 d), litter removal between flocks
Variability ammonia emissions

Variation coefficient between farm locations: 35%

Ventilation rate (m³/h per animal) Ammonia emission (kg/year per animal)

Mosquera et al. 2010, NL, 4 barn locations
NH3 emission factors for broiler barns

Emission factors used in permit procedures, expressed in g per year and animal place:

Germany: 50 g NH3
Netherlands: 80 g NH3
NL- recent measurements: 72 g NH3
NH3 mitigation options for broilers

- Feed composition: less not-utilized N, less ammonia formation

- Litter conditioning/treatments: decreasing ammonia formation

- Air purification of ventilation air: removing ammonia by air scrubbing

To be accepted as BAT in NL: < 45 g NH3/year per bird
Effects of feed composition

Reducing N-excretion:
- Decreasing CP content and free amino acids: NH3-reduction potential 25%
- Intensified phase feeding: increasing N efficiency, NH3-reduction potential 20%

- Working principles demonstrated in experimental research
- Will be implemented as recognized mitigation options in NL coming years, after validation on commercial farms
Litter conditioning measures

- Three different air recirculation systems have been developed that increase dry matter in litter by improved air distribution, and significantly decrease NH3 emission.

- Air recirculation systems have been evaluated on commercial farms using a standardized measurement protocol for emission factors.
Air recirculation by auxiliary vertical fans

Improves litter conditions and microclimate for birds

1 fan every 150 m²
Maximum capacity 1.8 m³/h per bird
(picture Fancom, Imago system)
Air recirculation by vertical heater fans

Cross sectional view

Top view barn

1 fan + heater: every 450 m²
Central heating system
(picture Wesselman heaters)
Air recirculation in combination with heat exchanger for inlet air

Air supply through heat exchange unit and distribution pipes

(pictures Plettenburg air handling)
Emission factors: NH3 mitigation systems for broiler production

<table>
<thead>
<tr>
<th>NH3 mitigation system</th>
<th>NH3 emission factor (g NH3/year per animal place)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference level: conventional broiler barn</td>
<td>80</td>
</tr>
<tr>
<td>Air recirculation: auxiliary vertical fan</td>
<td>37</td>
</tr>
<tr>
<td>Air recirculation: vertical heater fans</td>
<td>35</td>
</tr>
<tr>
<td>Air distribution system and heat exchanger</td>
<td>21</td>
</tr>
<tr>
<td>Chemical air scrubber (90% NH3-reduction)</td>
<td>8</td>
</tr>
<tr>
<td>Biological air scrubber (70% NH3-reduction)</td>
<td>24</td>
</tr>
</tbody>
</table>
Process scheme of conventional scrubber/biotrickling unit

- Air inlet
- Air outlet
- Fresh water supply
- Recirculation
- Packing 3 m³
- Buffer tank 35 m³
- Water discharge
- 20,000 m³/h
Air scrubbers in livestock industry

- Both chemical and biological scrubbers are applied since ~1995
- Currently about 10% of pig production is using scrubbers
- Very limited use in poultry industry until recently because of clogging problems
- Biological and chemical scrubbers are now introduced again in poultry industry because of their PM10 removal capacity
Costs of mitigation systems in broiler production

<table>
<thead>
<tr>
<th>Mitigation system</th>
<th>Investment costs</th>
<th>Yearly depreciation</th>
<th>Yearly extra</th>
<th>Total extra costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical fans</td>
<td>0.68</td>
<td>0.10</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>Vertical heater fan</td>
<td>0.42</td>
<td>0.06</td>
<td>-0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat exchanger + air distribution</td>
<td>1.11</td>
<td>0.13</td>
<td>-0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>Chemical air scrubber</td>
<td>3.30</td>
<td>0.44</td>
<td>0.43</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Background fine dust challenge

Effects fine dust (PM10 and PM2.5) on human health

EU set limits on fine dust in outside air
PM10: 40 μg/m3 yearly limit PM10
PM10: 50 μg/m3 daily limit with max 35 crossings
PM2.5: 25 μg/m3 yearly (2015)

NL: derogation request to reach threshold values PM10 by 2012

National mitigation programme to meet targets 2012
NL: PM10 concentration levels

Red: areas where EU threshold values are exceeded in 2010
Fine dust: main sources

Bronnen van fijn stof

(source Ministry of Environment NL)
Litter-based poultry barns main agricultural source
Dust in animal production: mainly originating from manure/litter and feathers
Mass distribution of dust over different particle size classes: fattening pigs and broilers

(Aarnink et al., 1999)
Contribution PM10 from agriculture

- 20% primary PM10 from poultry and pig houses, especially bedding systems
- Approx. 100-150 poultry farms do not comply with PM10 standards
- Agricultural sources part of the national mitigation program to meet PM10 targets for 2012
Research and development programme for dust reduction options for poultry farms

Objectives:

- Practical technology, tested and farm ready
- As soon as possible available (from 2009 on)
- Close cooperation between Livestock Research of Wageningen UR and supplying industry
- Financed by Ministries of Agriculture and Environment
Inside air quality

Feed
- Water content
- Fat content
- Coating pellets
- Form: meal, crumb, pellets
- Ingredients

Animal
- Species
- Genotype
- Age
- Number

Faeces + urine
- Pen fouling

Bedding
- Kind
- Water content
- Amount
- Refreshment

Dust on surfaces

Force
- Processing / transport feed / bedding
- Chewing
- Trampling
- Scouring
- Drying

Outside air quality

Airborne dust in animal house

Force
- Animal activity
- Human activity
- Supplying feed / bedding material
- Air flow

Dust emission to outside air

Force
- Ventilation

Inside air quality

Force
- Sedimentation
Selection of main dust reduction options for poultry

- Light schedules (affecting animal activity)
- Litter/bedding (materials, management)
- Oil film application
- Ionization techniques
- Air scrubbers (simple and multi-stage)
- Drying tunnels using ventilation air
- Water film application
- Electrostatic devices and dry dust filters
- New concepts proposed by industry
Development of methods to measure high dust loads from animal housings

Inlets, cyclones PM10 en PM2.5, filter
Exact air flow: 1.0 m3/h
NEN-EN 12341, 1998; NEN-EN 14907, 2005
Sampling set up in broiler house
Broiler rooms

- Rooms 5-8: oil spraying
- Rooms 2, 3: ionization
- Rooms 1, 4 control rooms
- Room: 8.3 x 16.0 m
- Standard broiler housing and equipment
- 20 broilers per m²
- Total 2675 broilers per room
- Mechanical ventilation: cap. 21 000 m³/h
Litter type broilers

- Working principle: less particulates in litter. Potential reduction 10-20%?

Investigated materials:
- sawdust
- Cut wheat straw
- Cut rape seed straw
- Maize silage

- Conclusion: no effect on PM10 emission
- Side effect: maize silage < NH3 emission
Light schedules

- Working principle: less animal activity, potential reduction 10-30%?

- Different light schedules investigated:
 - Comply with welfare regulations
 - No or minimal effect in broilers
Oil film application in broilers:
Principle of oil film application

- Sticking dust particles to litter by tiny oil film
- Less generation of particles into air by animal movement
- Daily administration during small intervals (20 seconds) of oil mist (rape seed oil)
Oil spraying

- Rapeseed oil
- 2 oil lines, 2 air lines
- 4 nozzles/tube
- Spraying area: one line: 8.3x8.0 m
PM emission pattern during the growing cycle

\[Y = -0.19 + 0.12 \times (1.14)^X \]

\[R^2 = 100\% \]

PM10 emission: 88% during last 2 weeks
PM2.5 emission: 95% during last 2 weeks
Results: effect oil dose on PM reduction, rounds 1 - 3

\[y = 1.71x + 44.4 \]
\[R^2 = 0.77 \]

\[y = -0.24x + 85.3 \]
\[R^2 = 0.02 \]
Effect spraying interval on PM reduction

Daily spraying gave 23% more PM10 reduction than spraying every other day (P=0.05)

No difference was found for PM2.5
No significant effects on animal health

Improved air quality inside
Effect oil dose on personal exposure to PM10

\[y = 0.65x + 64.1 \]

\[R^2 = 0.24 \]
Cleaning item in oil film application broilers

Cleaning: more time needed; this can be reduced by:

Reduced oil application: starting at 21 d, less oil per m² per day

Application at floor level: mobile system, autonomous oil robot with spraying beam is in development
Oil film application: introduction in practice?

- Tested on two farm locations, according measurement protocol PM10
- Results confirmed earlier observations on experimental farms

- Attention required for costs (extra cleaning time)
- Application in layer houses so far not possible
Application of ionization techniques in broiler houses

• Working principle: loading particles with electrons by corona’s, attachment of loaded particles to surfaces

• Electrostatic Particle Ionization (EPI) system
Ionization set up at experimental poultry farm

- 2 lines with discharge electrodes
- 2.5 m above litter
- -30 kV DC
- 0.4 – 0.7 mA
Experimental set-up ionization in broilers

Two growing cycles

2 ionization rooms; 2 control rooms
Additional measurements ionization in broilers

Ion concentration

Ozone concentration

Ultra fine particle concentration (range 5 – 1100 nm)
Results ionization

Mean ion concentration: 1,800 ions/cm3, ranging from 220 – 6,400 ions/cm3

Ozon concentration: < 0.01 ppm

Ultra-fine particle count (range 5 – 1100 nm): 45% lower in ionization rooms
Results ionization

System worked correctly during whole experiment

Amperage decreased gradually from 0.7 – 0.4 mA during the growing cycle

Cleaning of plates gave slight increase of current

PM10 reduction: 36% (P<0.001)

PM2.5 reduction: 10% (P<0.05)
Ionization: introduction in practice

- Tested on two farm locations, according measurement protocol PM10: control-case approach on both farms.

- Results are better than earlier observations on experimental farms: average PM10 removal rate 50%
Look for the treatment
Outlook

- Testing phase of abatements techniques for broilers was successful: a strong demonstration effort is required for practical implementation.
- For layer houses only end-of-pipe techniques are currently available: more research needed here.
- In general this program showed that quick solutions can be achieved if industry and research work closely together from an early phase.
Thank you for your attention